EL CONCEPTO DE MOL Y SUS APLICACIONES (UNIDAD 7)



MOL: Un Mol es 6,023 10 23 unidades.
Este número también es conocido como el número de Avogadro
Así el mol pasa a ser una forma adecuada de medir cantidades de partículas de la química.

PESO ATOMICO
El Peso Atómico de un elemento ( A r ) es la masa de un mol de átomos de tal elemento expresada gramos.
Sus unidades de medidas serán por consiguiente gramos / Mol de átomos
1 mol de átomos = N átomos = peso atómico (gramos/mol)

EL MOL DE MOLECULAS
Con la hipótesis de Avogadro, se puede generalizar que:
Un mol de moléculas de cualquier gas medido en TPE ocupa un volumen de 22,4 Litros.
Recién hemos definido que la masa expresada en gramos de un mol de átomos es el Peso Atómico.

PESO MOLECULAR
El Peso Molecular ( M r ) de una sustancia es la masa de un mol de moléculas de tal sustancia expresada en gramos.
Sus unidades de medidas serán por consiguiente gramos / Mol de moléculas
1 mol de moléculas = N moléculas = peso molecular Mr (gramos/mol)

CALCULO DEL PESO MOLECULAR
Generalizando, si una Sustancia tiene por Fórmula AaBbCc........
A nivel submicroscópico su molécula está formada por a átomos de A, b átomos de B y c átomos de C etc...
y a nivel macroscópico el mol de moléculas está formada por a moles de átomos de A, b moles de átomos de B y c moles de átomos átomos de C etc... y de allí que el Peso Molecular se calcule con la siguiente fórmula.
Mr AaBbCc........ = a * Ar A + b * Ar B + c * Ar C +........
Ejemplo:
¿Cuánto vale el Peso molecular del Cloroformo CHCl3?
Mr CHCl3 = 1 *12 + 1 * 1 + 3 * 35,5 = 119,5 g/mol

PROPIEDADES INTENSIVAS:
Son aquellas propiedades del sistema cuyo valor no depende del tamaño del mismo, es decir son independientes de la masa del sistema.

PROPIEDADES EXTENSIVAS:
Son aquellas propiedades del sistema cuyo valor sí depende del tamaño del mismo, es decir son dependientes de la masa del sistema.
La composición de un sistema expresada en % en peso es una magnitud INTENSIVA.
Una magnitud intensiva debe poder calcularse con una relación independiente del tamaño del sistema.
% Elemento = (Atomicidad Elemento A r Elemento / M r Sustancia )*100
Ejemplo:
% C = ( 1 * 12 / 16 )100 = 75 %
% H = ( 4 * 1 / 16 )100 = 25 %

LA ECUACIÓN DE ESTADO DE LOS GASES IDEALES.
Un sistema gaseoso se encuentra en un estado definido cuando, además de precisarse la naturaleza del gas, se conocen tres de las siguientes cuatro variables:
n = Número de moles, V = Volumen, P = Presión y t = temperatura.
Para comenzar el estudio de las relaciones es conveniente definir el Volumen Molar
Volumen Molar = V = V / n (L/mol)

Ley de Boyle : Volumen Molar vs. Presión
Ley de Charles: Volumen Molar vs. Temperatura
Ambas leyes se pueden agrupar en una sola expresión:
(V P) /( n T) = k1 k2 = R = 22,4 (L)*1 (atm) /1 (mol)* 273,16 ( °K) = 0,082 (L atm / mol °K)
Esta relación corresponde a la a Ecuación de Estado de los Gases Ideales cuya expresión más común es :
PV = n R T donde R = 0,082 (L atm / mol °K)

MÉTODO DE DETERMINACIÓN DEL PESO MOLECULAR
La determinación experimental del valor de Mr es de fundamental importancia cuando no se conoce la fórmula de alguna sustancia. Si la sustancia se puede evaporar podemos aplicar la ecuación anterior pero para calcular el Peso Molecular.
Mr = densidad P,T RT / P


DETERMINACIÓN DE FÓRMULAS EMPÍRICAS Y MOLECULARES
Mostraremos a continuación la forma sistemática de determinar las fórmulas empíricas y las moleculares haciendo uso de los conceptos de Ar y Mr.

ANALISIS QUÍMICO àFORMULA EMPIRICA à FORMULA MOLECULAR
Composición % Relación en el número de Átomos Número Exacto de átomos
Los datos de composición de un compuesto entregados por el Análisis Químico a la forma de composición porcentual de los elementos, es por lo general, el punto de partida. Como ya hemos establecido éstas magnitudes son de tipo Intensivas. Sin embargo, para poder calcular el número de moles de átomos, que es esencialmente de tipo extensivo, es preciso trabajar con un sistema de tamaño definido y adecuado a los datos y cálculos. Esto es, nos damos una Base de Cálculo (B.C.),por lo general 100 g. de la Sustancia, y así trabajamos con masas determinadas de los diferentes elementos.
Ejemplo: Dada la composición en % que se indica y Ar C =12 y Ar H =1
Fórmula Empírica
En la molécula, el número de átomos de H es el doble que el número de átomos de C.
Esto equivale decir que la fórmula empírica es CH2. Además
Mr " Empírico = 12*1+1*2= 14 (g/FE)

Fórmula Molecular
La Fórmula Molecular indica la cantidad exacta de átomos de cada elemento en la molécula. Esa cantidad exacta de átomos debe mantener la proporción observada en la fórmula empírica, por lo tanto, la fórmula Molecular debe ser (CH2 )m donde m es un número entero por determinar.
Si m = 1 Mr CH2 = 14 * 1 (g/mol)
Si m = 2 Mr ( CH2 ) 2 = 14 * 2 (g/mol)
Si m = 3 Mr ( CH2 ) 3 = 14 * 3 (g/mol)
Si m = m Mr ( CH2 ) m = Mr Empírico * m (g/mol)
m = Mr / "Mr" Empírico
Si el problema de ejemplo continúa: la sustancia es un gas a 90 °C y 1 atm y en estas condiciones tiene una densidad de 2,82 (g/L). Es la información requerida para el cálculo de Mr y de allí calcular m.
Recordamos la relación para calcular Pesos Moleculares experimentalmente:
de la Ecuación de estado de los Gases Ideales obteníamos:
densidad P,T = Mr P / R T y de allí :
Mr = densidad P,T RT / P
Mr = 2,82 (g/L) 0,082 ( L atm/mol °K) 363,16 °K / 1 atm = 83,97 (g/mol)
m = Mr / Mr Empírico = 83,97 ( g/mol ) / 14 ( g /F.E ) = 5,99 = 6
Por lo tanto la Fórmula Molecular, también conocida como Real o Verdadera es :
( CH2 )6 = C6 H12

No hay comentarios:

Publicar un comentario en la entrada